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Abstract

The general dynamic properties of the electron, as quasiparticle in conduction band of graphene, were analyzed. It
is shown that in graphene, these properties essentially differ from similar base properties for crystals with a simple
lattice, despite insignificant, on the first sight, difference of dispersion law ε(p). Primarily, crystals with an elementary
cell of arbitrary complexity of structure were considered. The obtained general relations were applied further to
graphene. Herewith two-dimensional lattice of graphene has been considered as consisting of elementary cells with two
atoms. Typically, graphene is considered as crystals consisting of two simple nested sublattices. It has been shown that
both considerations lead to the analogous basic results. On the basis of obtained wave Hamiltonian, all the dynamic
characteristics of the injected electron, considered as a quasiparticle, were found: speed, tensor of effective dynamic mass,
and wave Lagrangian. Also, for some physically actual situations, the dynamic characteristics of an alternative description
have been found: a mechanical momentum pm, mechanical Hamiltonian, and mechanical Lagrangian. For these
situations, a generalized Louis de Broglie relationship between mechanical pm and wave p momenta was found also.
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Background
Due to the growing interest in physical, particularly electric-
ally conductive properties of graphene, the analysis of gen-
eral dynamic properties of the electron, as quasiparticle in
the band of conductivity or excitons (bound electron-hole
pair) is particularly relevant. Such dynamic properties are
associated with the study of charge and energy transfer pro-
cesses. General theoretical concepts of these processes are
developed intensively as in graphene [1–8] so in other
physical systems [9–16]. The theoretical description of
charge or energy transfer processes can also be used for
research in sphere of transmission of information signals
[17] and be the basis for further development in areas such
as superconductivity [18] and superfluidity [19]. Such an
analysis can be relevant for other environments [20–22],
non-crystalline. Everything leads to the need for a general
analysis of the dynamic properties of quasiparticles in crys-
tals in general and for graphene, in particular.
Analysis of the general dynamic properties of an elec-

tron in the conduction band was carried out (as before
[23–27]), on the base of one of the main characteristics

of excited states of condensed matter: on the basis of the
dispersion law.
Typically, graphene is considered as flat carbon mon-

atomic crystals consisting of two simple nested sublat-
tices [1–5]. However, such a consideration differs from
the traditional one. This last is based on the concept of
a complex unit cell with a few atoms.
The purpose of the article is to show that the trad-

itional consideration leads to the already known as basic
results for graphene, to fulfill the analysis of general
dynamic properties of the electron (considering as a
quasiparticle) in the conduction band of graphene and
to compare obtained results with the analogous basic
characteristics for the simple lattices.
It is shown that all the dynamic characteristics are sig-

nificantly different from the standard ones for crystals
with a simple lattice [24–27].)

Methods
The Basic System of Equations for Quasiparticles in the
Crystals With a Complex Unit Cell
It is known [28] that in the case of crystals with a complex
unit cell (several atoms in one cell), the Hamilton func-
tional for the one-electron excitations without account of
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lattice response on the excitation [27] is defined by the
equation [24]:

E af gð Þ ¼ 1
2

(X
nαmβ

=wnαmβ þ
X

nα2Dnα anαj j2

þ
X

nαmβ
=Mnαmβ a�nαamβ þ a�mβ

anα

� �)
:

Vectors nα, mβ are defined by the relations:

nα ¼ nþ rα ð1Þ

where n = nibi is standard lattice vector. Index i accepts
from one to three values, depending on the dimension of
the crystal (for one-dimensional crystal (polymers) i = 1
for two-dimensional crystals (graphene) i = {1, 2}; for
three-dimensional crystals i = {1, 2, 3}); ni are integers cor-
responding to the number of unit cells along the crystallo-
graphic direction i: ni = 0, ± 1, ± 2, ….Lattice vectors bi
are defined conventionally: bi = bi ξeξ, where bi ξ is vectors
projection of bi on to unit vectors eξ = (ex, ey, ez) of
Cartesian axes. Indices α, β take integer values from 0 to
S − 1, where S is the number of atoms per unit cell. Value
α = 0 corresponds to the main unit cell atom, which de-
fines the cell itself. It is assumed that r0 = 0. For values
α ≠ 0 the vectors rα are identified by the obvious relations:
rα = rαξeξ, where cp are coordinates of atom α ≠ 0.
Using the procedure of Hamiltonian dynamic

minimization [10, 26], in the approximation of an
ideal lattice and with account of the representation
(1), the following system of equations can be
obtained:

iℏ
∂anα

∂t
¼ Dαanα þ

X
β ≠αð Þ

Mrβ−rα anβ

þ
X
m ≠nð Þ

Mm−n amα

þ
X
m ≠nð Þ

X
β ≠αð Þ

Mm−nþrβ−rα amβ
ð2Þ

the solution of which has the following form:

anα ¼ Aαe
i k⋅nð Þ−ωt½ � ð3Þ

Here, in contrast to the simple lattice (one atom per
unit cell), the coefficients Aα are complex values. Then
(2) takes the form of an algebraic system for the coeffi-
cients Aα and A�

α determination:
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þ
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A�
β

X
n ≠0ð Þ

Mnþrβ−rαe
−i k⋅nð Þ ¼ 0

ð4Þ
Non-trivial solution of the system (4) with respect

to the Aα, A
�
α coefficients is defined by the condition

of its consistency. However, this condition can be im-
plemented only under concretization of the crystal
lattice.

Results and Discussion
Graphene as a Flat Monolayer Crystal Containing two
Atoms per Unit Cell
In this subsection, we show that graphene consider-
ation as a crystal with a complex unit cell leads to
the basic results, analogous to the consideration of
two nested interacting crystals with simple unit cells.
In particular, it concerns such a main characteristic as
the electron energy in the conduction band (disper-
sion ε(p)). Here, we will proceed from the general
system (4) for any crystals.
Fig. 1 shows a fragment of the graphene lattice

and its unit cell with two atoms. According to the
definition (1), a two-dimensional lattice vector n = ni
bi is defined by the equation: n = n1b1 + n2b2. The
unit cell is shown in detail in Fig. 1 and corresponds
to the values n1 = n2 = 0. The following can be estab-
lished by its geometry: b1 = exb, b2 ¼ ex 1

2 bþ ey 32 a ,

where b ¼ a
ffiffiffi
3

p
. Then the following can be obtained

for the vector n: n ¼ ex n1 þ 1
2 n2

� �
bþ ey 3

2 n2a.
Analogically, in accordance with (1), for the vector

rα = rαξeξ, which is reduced to a form: r1 = r1xex +

r1yey, also can be derived from Fig. 1: r1x ¼ b
2 ¼

ffiffi
3

p
2 a ;

r1y ¼ a
2. Then it is obvious that r1 ¼ b

2 ex þ a
2 ey.

Considering further that k = exkx + eyky, the scalar
product (k ⋅ n) of the factors e± i (k ⋅ n) in determining
of the system (4) is reduced to the form: (k ⋅ n) =
n1p1 + n2p2. The dimensionless momenta p1 and p2
have the form of:

p1 ¼ k⋅b1ð Þ ¼ kxb≡px; p2 ¼ k⋅b2ð Þ ¼ 1
2
px þ

3
2
py

where py≡kya. The subsequent consideration is more
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convenient to execute for p1, p2 momenta. To the px, py
momenta we will return below.

Further, in the Eq. (4) were taken into account all
properties of the crystal lattice. Also the representa-

tion e�i p1;2 ¼ cos p1;2
� �

� i sin p1;2
� �

was taken into

account. Then, in the nearest-neighbor approxima-
tion (within the first two coordination “spheres”,
shown in Fig. 1), the commonly used system of
equations written in matrix form [1–5] was
obtained:

Ma 1þ cos p1ð Þ þ cos p2ð Þf gΣ̂1A

þMa sin p1ð Þ þ sin p2ð Þf gΣ̂2A

þD̂A ¼ ℏωÎA
ð5Þ

where

A ¼
A0

A1

A�
0

A�
1

0
BB@

1
CCA; Σ̂1 ¼

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

0
BB@

1
CCA≡ σ̂ x 0̂

0̂ σ̂ x

� �
;

Σ̂2 ¼
0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0

0
BB@

1
CCA≡

σ̂ y 0̂
0̂ −σ̂ y

� �

D̂ ¼
D0 0 0 0
0 D1 0 0
0 0 D0 0
0 0 0 D1

0
BB@

1
CCA;

Î ¼
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0
BB@

1
CCA

The matrices Σ̂1 , Σ̂2 definition also shows the presen-
tation by means of the Pauli matrices σ̂ x , σ̂ у , which is
often used.
Finally, to determine their eigenvalue ℏω, the matrix

Eq. (5) must be represented in the form of a system of
four equations for A0, A1, A

�
0 , A

�
1 coefficients. Since the

Fig. 1 The crystal lattice of graphene and its elementary cell. Basic distance between atoms is denoted by a. The vectors b1, b2
determines the crystallographic directions. The unit cell contains two atoms which are marked by numerals “0” (basic atom) and “1”
(an extra atom). Numerals “0/”, “0//” denote the atoms of neighboring unit cells equivalent to atom “0”. Numerals “1/”, “1//” denote the
atoms of neighboring unit cells equivalent to atom “1”. Two circles with centers in atoms “0” and “1” shows the first two coordinative
“spheres,” which limit the consideration by the approximation of the nearest neighbors
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resulting equations are homogeneous, the eigenvalues
are determined by the conditions of this system
consistency:

D0−ℏωð Þ D1−ℏωð Þ ¼ M2
a 1þ 2 1þ cos p1ð Þ þ cos p2ð Þ þ cos p2−p1ð Þ½ �f g.

In ideal crystal conditions (infinite and defect-free),
the following condition is implemented D0 =D1 =D. In
this approximation, the eigenvalues are of the following
form:

ℏω� ¼ D�Ma

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2 1þ cos p1ð Þ þ cos p2ð Þ þ cos p2−p1ð Þð Þp

.

In {px, py} representation of this energy, the following
can be obtained:

ℏω� ¼ D�Ma

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2 1þ cos pxð Þ þ cos 3

2 py þ 1
2 px

� �
þ cos 3

2 py−
1
2 px

� �� �r
.

After some transformations, one can obtain a standard ex-
pression (with accuracy of notations of parameters and axes)

[1–5]: ΔE� ¼ �Ma

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 cos2 px=2ð Þ þ 4 cos px=2ð Þ cos 3py=2

� �r
,

where ΔE±≡ℏω±−D.
Further will be considered the dimensionless represen-

tation of this energy:

ε pð Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 cos2 px=2ð Þ þ 4 cos px=2ð Þ cos 3py=2

� �r
ð6Þ

which has the physical meaning of the dimensionless
Hamiltonian for the injected electron, considered as a
quasiparticle. In the Fig. 2, this energy, as it is often
done, is shown within several Brillouin zones. To analyze
the basic dynamical properties of quasiparticles in crys-
tals, the consideration of the first Brillouin zone is

enough. In the Fig. 3, the energy (6) is shown within the
area of single valuedness, which either does not extend
beyond the first Brillouin zone or coincides with it. The
next subsection will analyze some features of the dy-
namic characteristics of the electron, as a quasiparticle
in graphene conduction band within the area shown in
the Fig. 3.

Some Features of the Electron Dynamic Properties in
Graphene
At first glance, the dispersion relation (6) for the elec-
tron in graphene is not very different from the same re-
lation for simple (one atom per the cell) rectangular
lattice [24–27]. In fact, it complicates the situation so
that it is not always possible to carry out a full analysis
of the dynamic properties of electron in graphene. Fur-
ther, the two cases of the electron dynamic properties in
graphene will be discussed.

1. Common case Here, both momenta, px and py, are
certain, nonzero and are considered, as it was already
mentioned, within the area shown in Fig. 3.
One of the main dynamic characteristics of each quasi-

particle is speed, as it determines the current. And it deter-
mines the electrophysical properties of graphene. Since the
energy (6) has the physical meaning of the dimensionless
Hamiltonian, the dimensionless speed components deter-

mined by the following relations: βx ¼
∂εðpÞ
∂px

; βy ¼
∂εðpÞ
∂py

.

Substituting here the energy (6), after some transforma-
tions, the following can be obtained:

Fig. 2 Common band structure of graphene. For each of the momenta: px and py, several Brillouin zones [1] are considered, so the hexagonal
structure can be seen clearly. The lower surface corresponds to the sign “–” in the formula (6) for the energy ε(p) and relates to the conduction
band with normal dispersion. The upper surface corresponds to the sign “+” in this formula and relates to the conduction band with anomalous
dispersion. Both zones take part in the conductivity
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βx ¼ ∓
2 cos px=2ð Þ þ cos 3py=2

� �h i
ε pð Þj j sin px=2ð Þ;

βy ¼ ∓
3 cos px=2ð Þ

ε pð Þj j sin 3py=2
� �

ð7Þ
The upper (lower) signs in (7) correspond to the

upper (lower) signs in the definition (6), and

ε pð Þj j≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 cos2 px=2ð Þ þ 4 cos px=2ð Þ cos 3py=2

� �r
. Analo-

gous to energy (6), the lower signs correspond to the
conductivity band with normal dispersion, and the
upper signs correspond to conductivity band with
anomalous dispersion.
If we were considering a simple crystal (one atom per

the cell) with a rectangular unit cell, the components (7)
would have the form:
βx = sin(px/2), βy = sin(3py/2) (8)
I.e., the analytical expression for each speed component

becomes much more complicated and depends not only on
its “own” component of the wave momentum. That is why,
there appears the interest to numerical-graphical analysis
for these components. Such analysis is important to ascer-
tainment the question of the nature of change “behavior” of
the speed components, depending on the components of
the wave momentum. This analysis is shown in Fig. 4.
This figure shows both components of the dimension-

less speed, defined in the formulas (7): both for the con-
duction band with normal dispersion (Fig. 4a, c) and for
conduction band with abnormal dispersion (Fig. 4b, d).
Fig. 4a, b shows both modes of βx speeds (normal and ab-
normal). It is seen that for analyzed range, the βx compo-
nent practically does not depend on the component py of
wave momentum; a normal speed (Fig. 4a), as it should
be, increases with the increasing of component px of wave
momentum; and abnormal speed (Fig. 4b) is decreased.

A similar behavior is demonstrated by both βy
components, (Fig. 4c, d). The only difference is that
they (on the contrary) are practically independent of
the momentum component px. And depends on py
component in a conventional manner: component βy
of normal speed increases with increasing of the py
component (Fig. 4c), but for abnormal speed is
decreased (Fig. 4d).
These numerical and graphical results are interesting

because in the area {|px|, |py|} ≤ π/3, these relations are
simplified almost to the form (8). Since in many applica-
tions such an area is enough, then in this case, the whole
dynamics of a simple rectangular lattice, which was stud-
ied in details in papers [24–27], is reproduced. The region
{|px|, |py|} ≤ π/3, usually meets research needs with a
good margin at the low-energy electron injection into the
conduction band of graphene and when using fields of not
high intensity (much lower of electrostatic threshold of
material).
The other, no less important characteristic of the

dynamical properties of quasiparticle, is the tensor of
reciprocal effective mass. Due to the generality of
consideration, this tensor is a dynamic parameter in the
meaning that it depends on the components of wave
momentum p. In accordance with the general definition:

μ−1ij ¼ ∂βi
∂pj

, the following can be obtained:

μ−1xx
¼ ∓

cos pxð Þþ1
2 cos 3py=2ð Þ cos px=2ð Þ½ �

ε pð Þj j ∓
sin pxð Þþ cos 3py=2ð Þ sin px=2ð Þ½ �2

ε pð Þj j3 ;

μ−1yy
¼ ∓ 9

2
cos px=2ð Þ cos 3py=2ð Þ

ε pð Þj j ∓
3 cos px=2ð Þ sin 3py=2ð Þ½ �2

ε pð Þj j3 ;

μ−1xy
¼ μ−1yx ¼ � 3

2

sin 3py=2
� �

sin px=2ð Þ
ε pð Þj j ∓

∓ sin pxð Þ þ cos 3py=2
� �

sin px=2ð Þ
� � 3 cos px=2ð Þ sin 3py=2

� �
ε pð Þj j3

ð8Þ

Fig. 3 The band structure of graphene within the single-valuedness area. This area fully belong to the first Brillouin zone and it defined by the
inequalities: {|px|, |py|}≤ 2π/3
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By these two dynamic characteristics, the velocity
vector and tensor of reciprocal effective mass are
practically limiting the possibility of determining the
dynamic parameters in general case (without limita-
tion on the value of the wave momentum p). This is
due to the fact that for the construction of other
dynamic parameters, it is required to find the inverse
transformations for Eq. (7). That is, it is necessary to
determine the components of wave momentum p, as
a function of the speed components β that is analytically
impossible.
Therefore here, we mention one more dynamic

characteristic, which can be represented explicitly. It is a
wave Lagrangian. Following to the general definition of

the Lagrangian: l βð Þ ¼
X
i

βipi−h pð Þ , taking into

account that here h(p)≡ε(p), as well as taking into
accounts the determination of the speed components (7),
the Lagrangian can be obtained only in parametric form:

l βð Þ ¼ 1
ε pð Þ

n
px sin pxð Þ þ cos 3py=2

� �
sin px=2ð Þ

� �
þ 3py cos px=2ð Þ sin

3py=2
� �

−−1−4 cos2 px=2ð Þ−4 cos px=2ð Þ cos 3py=2
� �o

ð9Þ

where the parameters are the momentum components
px, py on which the speed components βx, βy are
dependent, as it is defined in the (7). Definition (9) in con-
junction with the definitions (7) represents the parametric
form of the wave Lagrangian dependence on the speed
components β. However, its detailed study requires
specific consideration, as well as the reverse conversions.

2. Case of the dynamics along the axis x (py = 0) Here,
we will consider a situation that allows fully constructing
the entire dynamics of the electron in the graphene
conduction band. This is the case when, for example,
the external field, stimulating the current in graphene, is
directed along the axis x. That is, when py = 0.

Fig. 4 The behavior of the dimensionless velocities in the single-valuedness area. The dependence of the dimensionless velocity components βx,
βy from the dimensionless components px, py of wave momentum in the single-valuedness area {|px|, |py|} ≤ π/2 presented. As it can be seen,
this area is a subset of the area: {|px|, |py|} ≤ 2π/3. a The normal mode for βx component (corresponds to the lower sign in the left formula of
definitions (7)). b The abnormal mode for βx component (corresponds to the upper sign in the left formula of definitions (7)). c The normal mode
for βy component (corresponds to the lower sign in the right formula of definitions (7)). d The abnormal mode for βy component (corresponds to
the upper sign in the right formula of definitions (7))
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Immediately, it should be noted that an alternative situ-
ation (when the field is directed along the axis y and px = 0)
does not allow to fulfill one of the reverse conversions and,
therefore, to construct the full dynamics to the end.
In the case when the condition py = 0 is fulfilled, the

Hamiltonian takes the form:
ε(p) = ± |2 cos(px/2) + 1|.
For this situation, the first Brillouin zone is now has a

diapason from − 2π up to 2π. However for illustrative
purposes, we will consider not the entire first Brillouin
zone, but only the area, where the structure 2 cos(px/2) + 1
has a positive definiteness. This area is limited to the range:
|px| ≤ 4π/3. In this case, the energy ε(p) takes more simple
form for analysis:

ε pð Þ ¼ � 1þ 2 cos px=2ð Þð Þ ð10Þ

Next, a single non-zero speed component can be found
in accordance with the definition βx(p) = ∂ε(p)/∂px:

βx pð Þ ¼ ∓ sin px=2ð Þ ð11Þ

Hereinafter, the upper (lower) signs always correspond
to the upper (lower) sign in the energy (10). At the same
time, we recall that the lower signs always correspond to
the conduction band with normal dispersion.
An important feature of this case is that here one can find

the explicit form of the analytic dependence of momentum
px from speed βx, what was unsuccessful during general
consideration. This dependence is reduced to the equation:

px βð Þ ¼ ∓2 arcsin βx
� � ð12Þ

and limits the area of the wave momentum px defin-
ition with the area of the function sin(…) single valued-
ness, i.e., with inequality |px| ≤ π. As it can be seen, this
area is a subset of the area: |px| ≤ 4π/3.
The presence of the reverse conversion (12) imme-

diately allows constructing the wave Lagrangian for
an electron, as quasiparticle, injected into the conduc-
tion band. In accordance with the general definition:

l βð Þ ¼
X
i

βipi−h pð Þ≡βxpx−ε pð Þ , the following can be

obtained:

l βð Þ ¼ ∓ 2βx arcsin βx
� �þ 2

ffiffiffiffiffiffiffiffiffiffi
1−β2x

q
þ 1

	 

,

where it was taken into consideration that, according
to (11):

cos px=2ð Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− sin2 px=2ð Þ

q
¼

ffiffiffiffiffiffiffiffiffiffi
1−β2x

q
ð13Þ

It is obvious that direct differentiation of this Lagran-
gian with respect to βx gives the momentum (12), and
the Lagrangian itself, as it is shown in [25, 26], is one of
a phase elements of the wave function (3).

Now, we can find a single nonzero component:
μ−1xx ¼ ∓ 1

2 cos px=2ð Þ. According to (13):

μxx ¼ ∓
2

cos px=2ð Þ ¼ ∓
2ffiffiffiffiffiffiffiffiffiffi
1−β2x

q ð14Þ

All values determined after energy (10) make up the
so-called wave branch of the classical description of the
electron conduction in graphene in the presence of mo-
tion only along the axis x. However, in parallel with this
way of classical description, exists also a mechanical
branch of description, the construction of which is based
on two circumstances. First, it is based on the fact that
the wave Hamiltonian (10) is also a mechanical Lagran-
gian. And, second, that the speed (11) is common to
both descriptions. In other words, the following equality
takes place: lm(β) = ε(p). Proceeding from it, as well as
from the definition (11) for the speed, one can consist-

ently find: lm βð Þ ¼ � 1þ 2
ffiffiffiffiffiffiffiffiffiffi
1−β2x

q� �
.

On the basis of the definition: pxm ¼ ∂lmðβÞ
∂βx

, we derive

the mechanical momentum:

pxm ¼ ∓2
βxffiffiffiffiffiffiffiffiffiffi
1−β2x

q ð15Þ

which exactly corresponds to the standard definition of a
mechanical momentum, as the product of speed and mass.
Indeed, taking into account the definition of mass (14) and
in using it in definition pxm ¼ μxxβx, we exactly obtain (15).
The last mechanical characteristic, which completes

the construction of the mechanical branch of the
classical type descriptions for electron conduction in
grapheme, is a mechanical Hamiltonian. To construct it,

we use a common definition of the Hamiltonian: hm pmð Þ

¼
X
i

βip
i
m−lm βð Þ≡βxpxm−lm βð Þ , as well as the represen-

tation inverse to (15): βx ¼ ∓
pxm=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðpxm=2Þ2
q . As a result

we obtain: hm pmð Þ ¼ ∓ 1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ pxm=2

� �2q� �
.

Generalized Ratio of Louis de Broglie in Graphene
The generalized ratio of Louis de Broglie establishes a
relationship between the mechanical and the wave
momenta, more general than linear: pm = p, which was
formulated by de Broglie. This relation is of great practical
importance. It allows fulfilling a correct transition from
mechanical description of classical type to the wave
description of classical type, for example, for the electron
as a particle or quasiparticle.
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Usually, the electron dynamics outside of the crystal
(free electron) is considered in terms of the mechanical
description of classical type. Whereas dynamic of this
electron after injection into the crystal is more conveni-
ent to consider in terms of classical type too, however,
for the wave branch of descriptions. If this injection
takes place at a large mechanical momenta pm (in the
relativistic meaning), the linear relationship for such a
conversion may be not suitable. This situation is clear
“visible” for the case py = 0.
Indeed, from relationship (15) taking into account

(11), we can find the following: pxm ¼ 2tg px=2ð Þ. In other
words, for small momenta values with a good degree of
accuracy, linear relationship can be used: pхm ¼ px . If the
mechanical momentum of the electron before the
injection was big enough in the relativistic meaning
pхm
�� �� >> 1
� �

, then after injection, its wave momentum
px will in any case satisfy the inequality |px| < π. It is
clear that the use of the linear correlation pхm ¼ px in
this case instead of general relationship pxm ¼ 2tg px=2ð Þ
will lead to significant errors in predicting the electrical
and physical properties of graphene.

Conclusions
Basic principles of construction of general dynamic
properties an electron injected into graphene analyzed.
First of all, it is shown that graphene can be regarded by
a traditional method as the crystal with complex unit
cell (containing two atoms). This leads to the same re-
sults as conventional for graphene but not quite trad-
itional the consideration of them as two nested each
other and interacting crystals with simple lattices. The
analysis was conducted for such excited states as the
electron that injected into the conduction band. This ex-
citation is realized in the form of two dispersion law:

ε pð Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 cos2 px=2ð Þ þ 4 cos px=2ð Þ cos 3py=2

� �r
. They

correspond to the dependence the electron energy from
components of the wave momentum Therefore, the con-
struction of the dynamic properties of the electron as a
point object (quasiparticle) is based on the representa-
tion about this energy as a Hamiltonian.
The dimensionless velocity of the electron β(p) and

the dynamic tensor of inverse effective mass μ̂−1 pð Þ have
been found for all cases considered in this paper. How-
ever, it is shown that in the general case, when the two
components of the wave momentum are different from
zero to construct completely all dynamics of the electron
analytically it is impossible. This is due to the inability to
get the relationship β(p), i.e., make analytical transform-
ation which is an inverse with respect to β(p).
It was determined that when py = 0, px ≠ 0, i.e., when

the dynamic direction is the only x − direction (for

example, due to the orientation of the external field) to
build a full dynamics of the electron analytically, it is
possible (in the inverse situation px = 0, py ≠ 0, as well in
a general case this is not possible). The speed, the wave
Lagrangian, the dynamic tensor of effective mass (in-
verse and direct), the mechanical Lagrangian, the mech-
anical momentum, and the mechanical Hamiltonian
serially found for this case. The presence of an explicit
expression for the mechanical momentum allowed for
this case (py = 0, px ≠ 0) to find a generalized relation of
Louis de Broglie. It makes it possible to do the correct
transition from classical description of mechanical type
to the similar wave description. This is important be-
cause the dynamics of the free electron outside crystal is
considered in terms of the mechanical description of
classical type, but in the crystal it is more convenient to
consider in terms of description, too, of the classical
type, but wave.
It makes it possible to do the correct transition from

classical description of mechanical type to the similar
wave description.
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